Limits...
Spatial and sex-specific dissection of the Anopheles gambiae midgut transcriptome.

Warr E, Aguilar R, Dong Y, Mahairaki V, Dimopoulos G - BMC Genomics (2007)

Bottom Line: A parallel peptidomic analysis of the cardia identified known mosquito antimicrobial peptides as well as several putative short secreted peptides that are likely to represent novel antimicrobial factors.The significantly greater functional diversity of the female midgut relate to hematophagy that is associated with digestion and nutrition uptake as well as exposes it to a variety of pathogens, and promotes growth of its endogenous microbial flora.The strikingly high proportion of immunity related factors in the cardia tissue most likely serves the function to increase sterility of ingested sugar and blood.

View Article: PubMed Central - HTML - PubMed

Affiliation: W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205-2179, USA. E.L.Warr@liverpool.ac.uk <E.L.Warr@liverpool.ac.uk>

ABSTRACT

Background: The midgut of hematophagous insects, such as disease transmitting mosquitoes, carries out a variety of essential functions that mostly relate to blood feeding. The midgut of the female malaria vector mosquito Anopheles gambiae is a major site of interactions between the parasite and the vector. Distinct compartments and cell types of the midgut tissue carry out specific functions and vector borne pathogens interact and infect different parts of the midgut.

Results: A microarray based global gene expression approach was used to compare transcript abundance in the four major female midgut compartments (cardia, anterior, anterior part of posterior and posterior part of posterior midgut) and between the male and female Anopheles gambiae midgut. Major differences between the female and male midgut gene expression relate to digestive processes and immunity. Each compartment has a distinct gene function profile with the posterior midgut expressing digestive enzyme genes and the cardia and anterior midgut expressing high levels of antimicrobial peptide and other immune gene transcripts. Interestingly, the cardia expressed several known anti-Plasmodium factors. A parallel peptidomic analysis of the cardia identified known mosquito antimicrobial peptides as well as several putative short secreted peptides that are likely to represent novel antimicrobial factors.

Conclusion: The A. gambiae sex specific midgut and female midgut compartment specific transcriptomes correlates with their known functions. The significantly greater functional diversity of the female midgut relate to hematophagy that is associated with digestion and nutrition uptake as well as exposes it to a variety of pathogens, and promotes growth of its endogenous microbial flora. The strikingly high proportion of immunity related factors in the cardia tissue most likely serves the function to increase sterility of ingested sugar and blood. A detailed characterization of the functional specificities of the female mosquito midgut and its various compartments can greatly contribute to our understanding of its role in disease transmission and generate the necessary tools for the development of malaria control strategies.

Show MeSH

Related in: MedlinePlus

A: Functional class distribution of transcriptomes enriched in any of the assayed compartments by greater than a 2-fold, compared to the whole female midgut. B: Functional class distribution of transcriptomes enriched in the cardia and the posterior midgut compartments by equal or greater than a 2-fold upon comparison between these two samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC1804276&req=5

Figure 2: A: Functional class distribution of transcriptomes enriched in any of the assayed compartments by greater than a 2-fold, compared to the whole female midgut. B: Functional class distribution of transcriptomes enriched in the cardia and the posterior midgut compartments by equal or greater than a 2-fold upon comparison between these two samples.

Mentions: To investigate the female midgut compartment-specific transcriptomes, the gene-specific mRNA abundance of each compartment (cardia, anterior, anterior-posterior and posterior-posterior) was compared to that of the whole female mosquito midgut (Figure 2a). The relatively small number of posterior part-enriched (anterior-posterior and posterior-posterior) genes identified in these assays is attributed to the significantly larger number of cells contained in the posterior midgut (and hence larger contribution of this compartment towards the total RNA of the midgut) and the quite similar cell makeup of the two parts in conjunction with our hybridization strategy that was based on a hybridization between a posterior compartment-specific labeled sample against the whole midgut sample, which also included the same posterior compartment transcripts. For this reason a second set of hybridizations was also performed to directly compare gene expression in the cardia and posterior midgut (Figure 2b) (Additional file 1). These assays identified a significantly larger number of posterior midgut-enriched transcripts.


Spatial and sex-specific dissection of the Anopheles gambiae midgut transcriptome.

Warr E, Aguilar R, Dong Y, Mahairaki V, Dimopoulos G - BMC Genomics (2007)

A: Functional class distribution of transcriptomes enriched in any of the assayed compartments by greater than a 2-fold, compared to the whole female midgut. B: Functional class distribution of transcriptomes enriched in the cardia and the posterior midgut compartments by equal or greater than a 2-fold upon comparison between these two samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC1804276&req=5

Figure 2: A: Functional class distribution of transcriptomes enriched in any of the assayed compartments by greater than a 2-fold, compared to the whole female midgut. B: Functional class distribution of transcriptomes enriched in the cardia and the posterior midgut compartments by equal or greater than a 2-fold upon comparison between these two samples.
Mentions: To investigate the female midgut compartment-specific transcriptomes, the gene-specific mRNA abundance of each compartment (cardia, anterior, anterior-posterior and posterior-posterior) was compared to that of the whole female mosquito midgut (Figure 2a). The relatively small number of posterior part-enriched (anterior-posterior and posterior-posterior) genes identified in these assays is attributed to the significantly larger number of cells contained in the posterior midgut (and hence larger contribution of this compartment towards the total RNA of the midgut) and the quite similar cell makeup of the two parts in conjunction with our hybridization strategy that was based on a hybridization between a posterior compartment-specific labeled sample against the whole midgut sample, which also included the same posterior compartment transcripts. For this reason a second set of hybridizations was also performed to directly compare gene expression in the cardia and posterior midgut (Figure 2b) (Additional file 1). These assays identified a significantly larger number of posterior midgut-enriched transcripts.

Bottom Line: A parallel peptidomic analysis of the cardia identified known mosquito antimicrobial peptides as well as several putative short secreted peptides that are likely to represent novel antimicrobial factors.The significantly greater functional diversity of the female midgut relate to hematophagy that is associated with digestion and nutrition uptake as well as exposes it to a variety of pathogens, and promotes growth of its endogenous microbial flora.The strikingly high proportion of immunity related factors in the cardia tissue most likely serves the function to increase sterility of ingested sugar and blood.

View Article: PubMed Central - HTML - PubMed

Affiliation: W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205-2179, USA. E.L.Warr@liverpool.ac.uk <E.L.Warr@liverpool.ac.uk>

ABSTRACT

Background: The midgut of hematophagous insects, such as disease transmitting mosquitoes, carries out a variety of essential functions that mostly relate to blood feeding. The midgut of the female malaria vector mosquito Anopheles gambiae is a major site of interactions between the parasite and the vector. Distinct compartments and cell types of the midgut tissue carry out specific functions and vector borne pathogens interact and infect different parts of the midgut.

Results: A microarray based global gene expression approach was used to compare transcript abundance in the four major female midgut compartments (cardia, anterior, anterior part of posterior and posterior part of posterior midgut) and between the male and female Anopheles gambiae midgut. Major differences between the female and male midgut gene expression relate to digestive processes and immunity. Each compartment has a distinct gene function profile with the posterior midgut expressing digestive enzyme genes and the cardia and anterior midgut expressing high levels of antimicrobial peptide and other immune gene transcripts. Interestingly, the cardia expressed several known anti-Plasmodium factors. A parallel peptidomic analysis of the cardia identified known mosquito antimicrobial peptides as well as several putative short secreted peptides that are likely to represent novel antimicrobial factors.

Conclusion: The A. gambiae sex specific midgut and female midgut compartment specific transcriptomes correlates with their known functions. The significantly greater functional diversity of the female midgut relate to hematophagy that is associated with digestion and nutrition uptake as well as exposes it to a variety of pathogens, and promotes growth of its endogenous microbial flora. The strikingly high proportion of immunity related factors in the cardia tissue most likely serves the function to increase sterility of ingested sugar and blood. A detailed characterization of the functional specificities of the female mosquito midgut and its various compartments can greatly contribute to our understanding of its role in disease transmission and generate the necessary tools for the development of malaria control strategies.

Show MeSH
Related in: MedlinePlus