Limits...
Storage protein profiles in Spanish and runner market type peanuts and potential markers.

Liang XQ, Luo M, Holbrook CC, Guo BZ - BMC Plant Biol. (2006)

Bottom Line: The 35 kDa protein in A13 and the 27 kDa protein in runner-type peanut genotypes were confirmed on the 2-D SDS-PAGE gels.These results suggest that there may be an association between these polymorphic storage protein isoforms and peanut subspecies fastigiata (Spanish type) and hypogaea (runner type).The polymorphic protein peptides distinguished by 2-D PAGE could be used as markers for identification of runner and Spanish peanuts.

View Article: PubMed Central - HTML - PubMed

Affiliation: USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA, USA. liang804@yahoo.com

ABSTRACT

Background: Proteomic analysis has proven to be the most powerful method for describing plant species and lines, and for identification of proteins in complex mixtures. The strength of this method resides in high resolving power of two-dimensional electrophoresis (2-DE), coupled with highly sensitive mass spectrometry (MS), and sequence homology search. By using this method, we might find polymorphic markers to differentiate peanut subspecies.

Results: Total proteins extracted from seeds of 12 different genotypes of cultivated peanut (Arachis hypogaea L.), comprised of runner market (A. hypogaea ssp. hypogaea) and Spanish-bunch market type (A. hypogaea ssp. fastigiata), were separated by electrophoresis on both one- and two-dimensional SDS-PAGE gels. The protein profiles were similar on one-dimensional gels for all tested peanut genotypes. However, peanut genotype A13 lacked one major band with a molecular weight of about 35 kDa. There was one minor band with a molecular weight of 27 kDa that was present in all runner peanut genotypes and the Spanish-derivatives (GT-YY7, GT-YY20, and GT-YY79). The Spanish-derivatives have a runner-type peanut in their pedigrees. The 35 kDa protein in A13 and the 27 kDa protein in runner-type peanut genotypes were confirmed on the 2-D SDS-PAGE gels. Among more than 150 main protein spots on the 2-D gels, four protein spots that were individually marked as spots 1-4 showed polymorphic patterns between runner-type and Spanish-bunch peanuts. Spot 1 (ca. 22.5 kDa, pI 3.9) and spot 2 (ca. 23.5 kDa, pI 5.7) were observed in all Spanish-bunch genotypes, but were not found in runner types. In contrast, spot 3 (ca. 23 kDa, pI 6.6) and spot 4 (ca. 22 kDa, pI 6.8) were present in all runner peanut genotypes but not in Spanish-bunch genotypes. These four protein spots were sequenced. Based on the internal and N-terminal amino acid sequences, these proteins are isoforms (iso-Ara h3) of each other, are iso-allergens and may be modified by post-translational cleavage.

Conclusion: These results suggest that there may be an association between these polymorphic storage protein isoforms and peanut subspecies fastigiata (Spanish type) and hypogaea (runner type). The polymorphic protein peptides distinguished by 2-D PAGE could be used as markers for identification of runner and Spanish peanuts.

Show MeSH

Related in: MedlinePlus

SDS-PAGE peanut seed total protein profiles. One-dimensional SDS-PAGE of peanut seed protein of runner (R) and Spanish (S) or Spanish derivatives (SD): R1 = A104, R2 = GK 7, R3 = A13, R4 = Tifrunner, R5 = A100, R6 = Georgia Green; S1 = ICGV 95435, S2 = MXHY, SD3 = GT-YY7, SD4 = GT-YY79, S5 = ZQ 48, SD6 = GT-YY20; M = molecular weight standards. The arrow () indicates the protein band with a molecular weight of 35 kDa and the arrow () indicates the 26 kDa protein band.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC1621064&req=5

Figure 1: SDS-PAGE peanut seed total protein profiles. One-dimensional SDS-PAGE of peanut seed protein of runner (R) and Spanish (S) or Spanish derivatives (SD): R1 = A104, R2 = GK 7, R3 = A13, R4 = Tifrunner, R5 = A100, R6 = Georgia Green; S1 = ICGV 95435, S2 = MXHY, SD3 = GT-YY7, SD4 = GT-YY79, S5 = ZQ 48, SD6 = GT-YY20; M = molecular weight standards. The arrow () indicates the protein band with a molecular weight of 35 kDa and the arrow () indicates the 26 kDa protein band.

Mentions: Total protein extracts from six runner and six Spanish-bunch peanut cultivars and lines were separated by one-dimensional SDS-PAGE, and the protein profiles revealed few major difference among all tested peanut genotypes (Fig. 1). Proteins were resolved as four groups (conarachin, acidic arachin, basic arachin, and smaller than 20 kDa). All but one peanut genotype had three strong bands in the range of 35 to 45 kDa, which corresponds to acidic arachins. Runner peanut A13 did not have this 35 kDa polypeptide, a subunit of Ara h3 present in other genotypes. This 35-kDa protein peptide was reported as a 36-kDa protein associated with blanchability in peanut [12]. A polymorphic protein band with a molecular weight of about 26 kDa were present in all six runner type genotypes and three Spanish derivatives GT-YY7, GT-YY79, and GT-YY20, which all have a runner type peanut, Induhuanpi, in their pedigrees (Fig. 1).


Storage protein profiles in Spanish and runner market type peanuts and potential markers.

Liang XQ, Luo M, Holbrook CC, Guo BZ - BMC Plant Biol. (2006)

SDS-PAGE peanut seed total protein profiles. One-dimensional SDS-PAGE of peanut seed protein of runner (R) and Spanish (S) or Spanish derivatives (SD): R1 = A104, R2 = GK 7, R3 = A13, R4 = Tifrunner, R5 = A100, R6 = Georgia Green; S1 = ICGV 95435, S2 = MXHY, SD3 = GT-YY7, SD4 = GT-YY79, S5 = ZQ 48, SD6 = GT-YY20; M = molecular weight standards. The arrow () indicates the protein band with a molecular weight of 35 kDa and the arrow () indicates the 26 kDa protein band.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC1621064&req=5

Figure 1: SDS-PAGE peanut seed total protein profiles. One-dimensional SDS-PAGE of peanut seed protein of runner (R) and Spanish (S) or Spanish derivatives (SD): R1 = A104, R2 = GK 7, R3 = A13, R4 = Tifrunner, R5 = A100, R6 = Georgia Green; S1 = ICGV 95435, S2 = MXHY, SD3 = GT-YY7, SD4 = GT-YY79, S5 = ZQ 48, SD6 = GT-YY20; M = molecular weight standards. The arrow () indicates the protein band with a molecular weight of 35 kDa and the arrow () indicates the 26 kDa protein band.
Mentions: Total protein extracts from six runner and six Spanish-bunch peanut cultivars and lines were separated by one-dimensional SDS-PAGE, and the protein profiles revealed few major difference among all tested peanut genotypes (Fig. 1). Proteins were resolved as four groups (conarachin, acidic arachin, basic arachin, and smaller than 20 kDa). All but one peanut genotype had three strong bands in the range of 35 to 45 kDa, which corresponds to acidic arachins. Runner peanut A13 did not have this 35 kDa polypeptide, a subunit of Ara h3 present in other genotypes. This 35-kDa protein peptide was reported as a 36-kDa protein associated with blanchability in peanut [12]. A polymorphic protein band with a molecular weight of about 26 kDa were present in all six runner type genotypes and three Spanish derivatives GT-YY7, GT-YY79, and GT-YY20, which all have a runner type peanut, Induhuanpi, in their pedigrees (Fig. 1).

Bottom Line: The 35 kDa protein in A13 and the 27 kDa protein in runner-type peanut genotypes were confirmed on the 2-D SDS-PAGE gels.These results suggest that there may be an association between these polymorphic storage protein isoforms and peanut subspecies fastigiata (Spanish type) and hypogaea (runner type).The polymorphic protein peptides distinguished by 2-D PAGE could be used as markers for identification of runner and Spanish peanuts.

View Article: PubMed Central - HTML - PubMed

Affiliation: USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA, USA. liang804@yahoo.com

ABSTRACT

Background: Proteomic analysis has proven to be the most powerful method for describing plant species and lines, and for identification of proteins in complex mixtures. The strength of this method resides in high resolving power of two-dimensional electrophoresis (2-DE), coupled with highly sensitive mass spectrometry (MS), and sequence homology search. By using this method, we might find polymorphic markers to differentiate peanut subspecies.

Results: Total proteins extracted from seeds of 12 different genotypes of cultivated peanut (Arachis hypogaea L.), comprised of runner market (A. hypogaea ssp. hypogaea) and Spanish-bunch market type (A. hypogaea ssp. fastigiata), were separated by electrophoresis on both one- and two-dimensional SDS-PAGE gels. The protein profiles were similar on one-dimensional gels for all tested peanut genotypes. However, peanut genotype A13 lacked one major band with a molecular weight of about 35 kDa. There was one minor band with a molecular weight of 27 kDa that was present in all runner peanut genotypes and the Spanish-derivatives (GT-YY7, GT-YY20, and GT-YY79). The Spanish-derivatives have a runner-type peanut in their pedigrees. The 35 kDa protein in A13 and the 27 kDa protein in runner-type peanut genotypes were confirmed on the 2-D SDS-PAGE gels. Among more than 150 main protein spots on the 2-D gels, four protein spots that were individually marked as spots 1-4 showed polymorphic patterns between runner-type and Spanish-bunch peanuts. Spot 1 (ca. 22.5 kDa, pI 3.9) and spot 2 (ca. 23.5 kDa, pI 5.7) were observed in all Spanish-bunch genotypes, but were not found in runner types. In contrast, spot 3 (ca. 23 kDa, pI 6.6) and spot 4 (ca. 22 kDa, pI 6.8) were present in all runner peanut genotypes but not in Spanish-bunch genotypes. These four protein spots were sequenced. Based on the internal and N-terminal amino acid sequences, these proteins are isoforms (iso-Ara h3) of each other, are iso-allergens and may be modified by post-translational cleavage.

Conclusion: These results suggest that there may be an association between these polymorphic storage protein isoforms and peanut subspecies fastigiata (Spanish type) and hypogaea (runner type). The polymorphic protein peptides distinguished by 2-D PAGE could be used as markers for identification of runner and Spanish peanuts.

Show MeSH
Related in: MedlinePlus