Limits...
The emergence and diffusion of DNA microarray technology.

Lenoir T, Giannella E - J Biomed Discov Collab (2006)

Bottom Line: Our study confirms the picture put forward by several scholars that the open character of networked economies is what makes them truly innovative.Whether they originated in a startup company environment that operated like a think-tank, such as Affymax, the research labs of a large firm, such as Agilent, or within a research university, the inventors we have followed drew heavily on knowledge resources from all parts of the network in bringing microarray platforms to light.Our study shows that the knowledge spillovers worked both ways, with federal funding of non-university research providing the impetus for reshaping the research agendas of several academic fields.

View Article: PubMed Central - HTML - PubMed

Affiliation: Jenkins Collaboratory for New Technologies in Society, Duke University, John Hope Franklin Center, 2204 Erwin Road, Durham, North Carolina 27708-0402, USA. lenoir@duke.edu

ABSTRACT

Unlabelled: The network model of innovation widely adopted among researchers in the economics of science and technology posits relatively porous boundaries between firms and academic research programs and a bi-directional flow of inventions, personnel, and tacit knowledge between sites of university and industry innovation. Moreover, the model suggests that these bi-directional flows should be considered as mutual stimulation of research and invention in both industry and academe, operating as a positive feedback loop. One side of this bi-directional flow--namely; the flow of inventions into industry through the licensing of university-based technologies--has been well studied; but the reverse phenomenon of the stimulation of university research through the absorption of new directions emanating from industry has yet to be investigated in much detail. We discuss the role of federal funding of academic research in the microarray field, and the multiple pathways through which federally supported development of commercial microarray technologies have transformed core academic research fields.

Results and conclusion: Our study confirms the picture put forward by several scholars that the open character of networked economies is what makes them truly innovative. In an open system innovations emerge from the network. The emergence and diffusion of microarray technologies we have traced here provides an excellent example of an open system of innovation in action. Whether they originated in a startup company environment that operated like a think-tank, such as Affymax, the research labs of a large firm, such as Agilent, or within a research university, the inventors we have followed drew heavily on knowledge resources from all parts of the network in bringing microarray platforms to light. Federal funding for high-tech startups and new industrial development was important at several phases in the early history of microarrays, and federal funding of academic researchers using microarrays was fundamental to transforming the research agendas of several fields within academe. The typical story told about the role of federal funding emphasizes the spillovers from federally funded academic research to industry. Our study shows that the knowledge spillovers worked both ways, with federal funding of non-university research providing the impetus for reshaping the research agendas of several academic fields.

No MeSH data available.


Related in: MedlinePlus

Quantum Dots. Images reproduced with the kind permission of Invitrogen Corporation (owner of Quantum Dot Corporation).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC1590052&req=5

Figure 8: Quantum Dots. Images reproduced with the kind permission of Invitrogen Corporation (owner of Quantum Dot Corporation).

Mentions: The story of Quantum Dot Corporation reflects that of Affymetrix in a few ways. The area of quantum dot nanotechnology was quite distant from the life sciences it eventually served before the advent of the gene chip and the enhancements to nanocrystals in the 1980s and 1990s that made them suitable as bright and reliable tags for DNA sequences and other biomolecules. While DNA microarrays provided an attractive and growing market to target, government funders, university collaborators, and industry interest prodded QDC to apply the nanocrystal tags in a variety of environments with results far exceeding those of previous labeling systems. Quantum Dot's beginnings in three universities, its ongoing ties to those institutions, and its efforts to develop its technology through collaborations with other academics demonstrate the two-way exchange we have been discussing. While the emergence of the GeneChip® caused the original university physicists and chemists behind Quantum Dot to shift their research to develop particular labeling applications, the company later received input from a variety of academic experts on how to extend its basic technology into new settings. Figure 8 provides illustrations of quantum dots, their scaffoldings, and how they help to label different parts of a cell [52].


The emergence and diffusion of DNA microarray technology.

Lenoir T, Giannella E - J Biomed Discov Collab (2006)

Quantum Dots. Images reproduced with the kind permission of Invitrogen Corporation (owner of Quantum Dot Corporation).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC1590052&req=5

Figure 8: Quantum Dots. Images reproduced with the kind permission of Invitrogen Corporation (owner of Quantum Dot Corporation).
Mentions: The story of Quantum Dot Corporation reflects that of Affymetrix in a few ways. The area of quantum dot nanotechnology was quite distant from the life sciences it eventually served before the advent of the gene chip and the enhancements to nanocrystals in the 1980s and 1990s that made them suitable as bright and reliable tags for DNA sequences and other biomolecules. While DNA microarrays provided an attractive and growing market to target, government funders, university collaborators, and industry interest prodded QDC to apply the nanocrystal tags in a variety of environments with results far exceeding those of previous labeling systems. Quantum Dot's beginnings in three universities, its ongoing ties to those institutions, and its efforts to develop its technology through collaborations with other academics demonstrate the two-way exchange we have been discussing. While the emergence of the GeneChip® caused the original university physicists and chemists behind Quantum Dot to shift their research to develop particular labeling applications, the company later received input from a variety of academic experts on how to extend its basic technology into new settings. Figure 8 provides illustrations of quantum dots, their scaffoldings, and how they help to label different parts of a cell [52].

Bottom Line: Our study confirms the picture put forward by several scholars that the open character of networked economies is what makes them truly innovative.Whether they originated in a startup company environment that operated like a think-tank, such as Affymax, the research labs of a large firm, such as Agilent, or within a research university, the inventors we have followed drew heavily on knowledge resources from all parts of the network in bringing microarray platforms to light.Our study shows that the knowledge spillovers worked both ways, with federal funding of non-university research providing the impetus for reshaping the research agendas of several academic fields.

View Article: PubMed Central - HTML - PubMed

Affiliation: Jenkins Collaboratory for New Technologies in Society, Duke University, John Hope Franklin Center, 2204 Erwin Road, Durham, North Carolina 27708-0402, USA. lenoir@duke.edu

ABSTRACT

Unlabelled: The network model of innovation widely adopted among researchers in the economics of science and technology posits relatively porous boundaries between firms and academic research programs and a bi-directional flow of inventions, personnel, and tacit knowledge between sites of university and industry innovation. Moreover, the model suggests that these bi-directional flows should be considered as mutual stimulation of research and invention in both industry and academe, operating as a positive feedback loop. One side of this bi-directional flow--namely; the flow of inventions into industry through the licensing of university-based technologies--has been well studied; but the reverse phenomenon of the stimulation of university research through the absorption of new directions emanating from industry has yet to be investigated in much detail. We discuss the role of federal funding of academic research in the microarray field, and the multiple pathways through which federally supported development of commercial microarray technologies have transformed core academic research fields.

Results and conclusion: Our study confirms the picture put forward by several scholars that the open character of networked economies is what makes them truly innovative. In an open system innovations emerge from the network. The emergence and diffusion of microarray technologies we have traced here provides an excellent example of an open system of innovation in action. Whether they originated in a startup company environment that operated like a think-tank, such as Affymax, the research labs of a large firm, such as Agilent, or within a research university, the inventors we have followed drew heavily on knowledge resources from all parts of the network in bringing microarray platforms to light. Federal funding for high-tech startups and new industrial development was important at several phases in the early history of microarrays, and federal funding of academic researchers using microarrays was fundamental to transforming the research agendas of several fields within academe. The typical story told about the role of federal funding emphasizes the spillovers from federally funded academic research to industry. Our study shows that the knowledge spillovers worked both ways, with federal funding of non-university research providing the impetus for reshaping the research agendas of several academic fields.

No MeSH data available.


Related in: MedlinePlus