Limits...
Distribution and densitometry mapping of L1-CAM immunoreactivity in the adult mouse brain--light microscopic observation.

Munakata H, Nakamura Y, Matsumoto-Miyai K, Itoh K, Yamasaki H, Shiosaka S - BMC Neurosci (2003)

Bottom Line: High to highest levels of non-neuronal and neuronal L1 were found in the grey matter; i.e. the piriform and entorhinal cortices, hypothalamus, reticular part of the substantia nigra, periaqueductal grey, trigeminal spinal nucleus etc.High to moderate density of neuronal L1 was found in the olfactory bulb, layer V of the cerebral cortex, amygdala, pontine grey, superior colliculi, cerebellar cortex, solitary tract nucleus etc.Only low to lowest levels of neuronal L1 were found in the hippocampus, grey matter in the caudate-putamen, thalamus, cerebellar nuclei etc.

View Article: PubMed Central - HTML - PubMed

Affiliation: Division of Structural Cell Biology, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma city, Nara 630-0192, Japan. munktahn@banyu.co.jp

ABSTRACT

Background: The importance of L1 expression in the matured brain is suggested by physiological and behavioral studies showing that L1 is related to hippocampal plasticity and fear conditioning. The distribution of L1 in mouse brain might provide a basis for understanding its role in the brain.

Results: We examined the overall distribution of L1 in the adult mouse brain by immunohistochemistry using two polyclonal antibodies against different epitopes for L1. Immunoreactive L1 was widely but unevenly distributed from the olfactory bulb to the upper cervical cord. The accumulation of immunoreactive L1 was greatest in a non-neuronal element of the major fibre bundles, i.e. the lateral olfactory tract, olfactory and temporal limb of the anterior commissure, corpus callosum, stria terminalis, globus pallidus, fornix, mammillothalamic tract, solitary tract, and spinal tract of the trigeminal nerve. High to highest levels of non-neuronal and neuronal L1 were found in the grey matter; i.e. the piriform and entorhinal cortices, hypothalamus, reticular part of the substantia nigra, periaqueductal grey, trigeminal spinal nucleus etc. High to moderate density of neuronal L1 was found in the olfactory bulb, layer V of the cerebral cortex, amygdala, pontine grey, superior colliculi, cerebellar cortex, solitary tract nucleus etc. Only low to lowest levels of neuronal L1 were found in the hippocampus, grey matter in the caudate-putamen, thalamus, cerebellar nuclei etc.

Conclusion: L1 is widely and unevenly distributed in the matured mouse brain, where immunoreactivity was present not only in neuronal elements; axons, synapses and cell soma, but also in non-neuronal elements.

Show MeSH

Related in: MedlinePlus

L1 immunoreactive structures in the limbic areas. a-f. Bright-field photomicrographs showing the preoptic area of the hypothalamus (a and b), bed nucleus of stria terminalis (c), stria terminalis (c and d), hippocampus (e), and amygdaloid complex (f). A higher magnification photograph of CA3 which was immunoreacted with antiFLL1 antibody is shown in the insert in (e). Note that better staining for proximal axons was found in CA3 than with antiCTL1 antibody. a: Bar = 1 mm; b-f: Bar = 500 μm; insert in e: Bar = 100 μm.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC155647&req=5

Figure 6: L1 immunoreactive structures in the limbic areas. a-f. Bright-field photomicrographs showing the preoptic area of the hypothalamus (a and b), bed nucleus of stria terminalis (c), stria terminalis (c and d), hippocampus (e), and amygdaloid complex (f). A higher magnification photograph of CA3 which was immunoreacted with antiFLL1 antibody is shown in the insert in (e). Note that better staining for proximal axons was found in CA3 than with antiCTL1 antibody. a: Bar = 1 mm; b-f: Bar = 500 μm; insert in e: Bar = 100 μm.

Mentions: The two polyclonal antisera (antiCTL1 and antiFLL1 antibodies) demonstrated an analogous staining pattern on immunohistochemistry, though the latter antiserum tended to stain passing proximal axons better than the former (Fig. 6e, insert). Consequently, described here are the results obtained with the antiCTL1 antibody unless specified otherwise. The specificity of immunostaining was checked by three procedures, (1) omission of primary antibodies, (2) absorption of primary antibody (antiCTL1) by cell membrane transfected with the rat full-length L1 gene, and (3) blocking of primary antibody by epidermal growth factor, because it shows a very similar immunohistological distribution profile [14]. No positive structure was found in any of the brain sections of controls (1; Fig. 1b) and (2; 1d',1e',1f'). In contrast, antiCTL1 antibody absorbed with mock-transfected cell membrane or blocked by epidermal growth factor stained positive structures as did antiCTL1 and antiFLL1 antibodies (Fig. 1c,1d,1e,1f). Thus, we concluded that both antibodies are specific.


Distribution and densitometry mapping of L1-CAM immunoreactivity in the adult mouse brain--light microscopic observation.

Munakata H, Nakamura Y, Matsumoto-Miyai K, Itoh K, Yamasaki H, Shiosaka S - BMC Neurosci (2003)

L1 immunoreactive structures in the limbic areas. a-f. Bright-field photomicrographs showing the preoptic area of the hypothalamus (a and b), bed nucleus of stria terminalis (c), stria terminalis (c and d), hippocampus (e), and amygdaloid complex (f). A higher magnification photograph of CA3 which was immunoreacted with antiFLL1 antibody is shown in the insert in (e). Note that better staining for proximal axons was found in CA3 than with antiCTL1 antibody. a: Bar = 1 mm; b-f: Bar = 500 μm; insert in e: Bar = 100 μm.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC155647&req=5

Figure 6: L1 immunoreactive structures in the limbic areas. a-f. Bright-field photomicrographs showing the preoptic area of the hypothalamus (a and b), bed nucleus of stria terminalis (c), stria terminalis (c and d), hippocampus (e), and amygdaloid complex (f). A higher magnification photograph of CA3 which was immunoreacted with antiFLL1 antibody is shown in the insert in (e). Note that better staining for proximal axons was found in CA3 than with antiCTL1 antibody. a: Bar = 1 mm; b-f: Bar = 500 μm; insert in e: Bar = 100 μm.
Mentions: The two polyclonal antisera (antiCTL1 and antiFLL1 antibodies) demonstrated an analogous staining pattern on immunohistochemistry, though the latter antiserum tended to stain passing proximal axons better than the former (Fig. 6e, insert). Consequently, described here are the results obtained with the antiCTL1 antibody unless specified otherwise. The specificity of immunostaining was checked by three procedures, (1) omission of primary antibodies, (2) absorption of primary antibody (antiCTL1) by cell membrane transfected with the rat full-length L1 gene, and (3) blocking of primary antibody by epidermal growth factor, because it shows a very similar immunohistological distribution profile [14]. No positive structure was found in any of the brain sections of controls (1; Fig. 1b) and (2; 1d',1e',1f'). In contrast, antiCTL1 antibody absorbed with mock-transfected cell membrane or blocked by epidermal growth factor stained positive structures as did antiCTL1 and antiFLL1 antibodies (Fig. 1c,1d,1e,1f). Thus, we concluded that both antibodies are specific.

Bottom Line: High to highest levels of non-neuronal and neuronal L1 were found in the grey matter; i.e. the piriform and entorhinal cortices, hypothalamus, reticular part of the substantia nigra, periaqueductal grey, trigeminal spinal nucleus etc.High to moderate density of neuronal L1 was found in the olfactory bulb, layer V of the cerebral cortex, amygdala, pontine grey, superior colliculi, cerebellar cortex, solitary tract nucleus etc.Only low to lowest levels of neuronal L1 were found in the hippocampus, grey matter in the caudate-putamen, thalamus, cerebellar nuclei etc.

View Article: PubMed Central - HTML - PubMed

Affiliation: Division of Structural Cell Biology, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma city, Nara 630-0192, Japan. munktahn@banyu.co.jp

ABSTRACT

Background: The importance of L1 expression in the matured brain is suggested by physiological and behavioral studies showing that L1 is related to hippocampal plasticity and fear conditioning. The distribution of L1 in mouse brain might provide a basis for understanding its role in the brain.

Results: We examined the overall distribution of L1 in the adult mouse brain by immunohistochemistry using two polyclonal antibodies against different epitopes for L1. Immunoreactive L1 was widely but unevenly distributed from the olfactory bulb to the upper cervical cord. The accumulation of immunoreactive L1 was greatest in a non-neuronal element of the major fibre bundles, i.e. the lateral olfactory tract, olfactory and temporal limb of the anterior commissure, corpus callosum, stria terminalis, globus pallidus, fornix, mammillothalamic tract, solitary tract, and spinal tract of the trigeminal nerve. High to highest levels of non-neuronal and neuronal L1 were found in the grey matter; i.e. the piriform and entorhinal cortices, hypothalamus, reticular part of the substantia nigra, periaqueductal grey, trigeminal spinal nucleus etc. High to moderate density of neuronal L1 was found in the olfactory bulb, layer V of the cerebral cortex, amygdala, pontine grey, superior colliculi, cerebellar cortex, solitary tract nucleus etc. Only low to lowest levels of neuronal L1 were found in the hippocampus, grey matter in the caudate-putamen, thalamus, cerebellar nuclei etc.

Conclusion: L1 is widely and unevenly distributed in the matured mouse brain, where immunoreactivity was present not only in neuronal elements; axons, synapses and cell soma, but also in non-neuronal elements.

Show MeSH
Related in: MedlinePlus