Limits...
Seasonal correlation of sporadic schizophrenia to Ixodes ticks and Lyme borreliosis.

Fritzsche M - Int J Health Geogr (2002)

Bottom Line: All published numerical data were then plotted against the seasonal distributions of Ixodes ticks worldwide.South of the Wallace Line, which limits the spread of Ixodes ticks and Borrelia burgdorferi into Australia, seasonal trends are less significant, and in Singapore, being non-endemic for Ixodes ticks and Lyme disease, schizophrenic birth excesses are absent.CONCLUSION: At present, it cannot be excluded that prenatal infection by B. burgdorferi is harmful to the implanting human blastocyst.

View Article: PubMed Central - HTML - PubMed

Affiliation: Clinic for Internal Medicine, Soodstrasse 13, 8134 Adliswil, Switzerland. markus.fritzsche@bluewin.ch

ABSTRACT
BACKGROUND: Being born in winter and spring is considered one of the most robust epidemiological risk factors for schizophrenia. The aetiology and exact timing of this birth excess, however, has remained elusive so far. Since during phylogeny, Borrelia DNA has led to multiple germ-line mutations within the CB1 candidate gene for schizophrenia, a meta analysis has been performed of all papers on schizophrenic birth excesses with no less than 3000 cases each. All published numerical data were then plotted against the seasonal distributions of Ixodes ticks worldwide. RESULTS: In the United States, Europe and Japan the birth excesses of those individuals who later in life develop schizophrenia mirror the seasonal distribution of Ixodes ticks nine months earlier at the time of conception. South of the Wallace Line, which limits the spread of Ixodes ticks and Borrelia burgdorferi into Australia, seasonal trends are less significant, and in Singapore, being non-endemic for Ixodes ticks and Lyme disease, schizophrenic birth excesses are absent. CONCLUSION: At present, it cannot be excluded that prenatal infection by B. burgdorferi is harmful to the implanting human blastocyst. The epidemiological clustering of sporadic schizophrenia by season and locality rather emphasises the risk to the unborn of developing a congenital, yet preventable brain disorder later in life.

No MeSH data available.


Related in: MedlinePlus

Seasonal correlation of sporadic schizophrenia to Ixodes ticks The seasonal periodicity of the adult and juvenile stages of Ixodes scapularis in the State of New York [19] exactly mirrors the dynamics of schizophrenic births in the north-eastern United States [20]. The spring and autumn populations of Ixodes ricinus in central Europe are affected by microclimatic conditions and a drop in humidity in midsummer (a = exposed meadow, b = dense hill vegetation or secondary deciduous woodland, c = highly sheltered habitat, d = spring-derived but autumn-feeding cohort). In northern Europe, however, there exists no late autumn cohort (d) as tick activity comes to a halt due to falling ambient temperature. Data adapted from [14,15,19,23,24]. The seasonal distribution of Ixodes persulcatus ticks in the Far East [21] appears to have given rise to schizophrenic births between February and March along with the typical decline in summer and late autumn [22]. In the case of a prenatal infection at the time of conception, nine months later these variables run parallel to the birth excess number of individuals with schizophrenia. In Singapore, by contrast, the non-significant birth excess in schizophrenia [41] is in line with the apparent absence of Ixodes ticks and B. burgdorferi from that part of the world [40].
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC149397&req=5

Figure 1: Seasonal correlation of sporadic schizophrenia to Ixodes ticks The seasonal periodicity of the adult and juvenile stages of Ixodes scapularis in the State of New York [19] exactly mirrors the dynamics of schizophrenic births in the north-eastern United States [20]. The spring and autumn populations of Ixodes ricinus in central Europe are affected by microclimatic conditions and a drop in humidity in midsummer (a = exposed meadow, b = dense hill vegetation or secondary deciduous woodland, c = highly sheltered habitat, d = spring-derived but autumn-feeding cohort). In northern Europe, however, there exists no late autumn cohort (d) as tick activity comes to a halt due to falling ambient temperature. Data adapted from [14,15,19,23,24]. The seasonal distribution of Ixodes persulcatus ticks in the Far East [21] appears to have given rise to schizophrenic births between February and March along with the typical decline in summer and late autumn [22]. In the case of a prenatal infection at the time of conception, nine months later these variables run parallel to the birth excess number of individuals with schizophrenia. In Singapore, by contrast, the non-significant birth excess in schizophrenia [41] is in line with the apparent absence of Ixodes ticks and B. burgdorferi from that part of the world [40].

Mentions: Due to the central European midsummer decrease in air humidity and thus reduced tick activity [19], the relative decline towards a schizophrenic birth deficit in April appears earlier and more pronounced the further south we move. See Switzerland [14] and Germany [15] in figure 1.


Seasonal correlation of sporadic schizophrenia to Ixodes ticks and Lyme borreliosis.

Fritzsche M - Int J Health Geogr (2002)

Seasonal correlation of sporadic schizophrenia to Ixodes ticks The seasonal periodicity of the adult and juvenile stages of Ixodes scapularis in the State of New York [19] exactly mirrors the dynamics of schizophrenic births in the north-eastern United States [20]. The spring and autumn populations of Ixodes ricinus in central Europe are affected by microclimatic conditions and a drop in humidity in midsummer (a = exposed meadow, b = dense hill vegetation or secondary deciduous woodland, c = highly sheltered habitat, d = spring-derived but autumn-feeding cohort). In northern Europe, however, there exists no late autumn cohort (d) as tick activity comes to a halt due to falling ambient temperature. Data adapted from [14,15,19,23,24]. The seasonal distribution of Ixodes persulcatus ticks in the Far East [21] appears to have given rise to schizophrenic births between February and March along with the typical decline in summer and late autumn [22]. In the case of a prenatal infection at the time of conception, nine months later these variables run parallel to the birth excess number of individuals with schizophrenia. In Singapore, by contrast, the non-significant birth excess in schizophrenia [41] is in line with the apparent absence of Ixodes ticks and B. burgdorferi from that part of the world [40].
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC149397&req=5

Figure 1: Seasonal correlation of sporadic schizophrenia to Ixodes ticks The seasonal periodicity of the adult and juvenile stages of Ixodes scapularis in the State of New York [19] exactly mirrors the dynamics of schizophrenic births in the north-eastern United States [20]. The spring and autumn populations of Ixodes ricinus in central Europe are affected by microclimatic conditions and a drop in humidity in midsummer (a = exposed meadow, b = dense hill vegetation or secondary deciduous woodland, c = highly sheltered habitat, d = spring-derived but autumn-feeding cohort). In northern Europe, however, there exists no late autumn cohort (d) as tick activity comes to a halt due to falling ambient temperature. Data adapted from [14,15,19,23,24]. The seasonal distribution of Ixodes persulcatus ticks in the Far East [21] appears to have given rise to schizophrenic births between February and March along with the typical decline in summer and late autumn [22]. In the case of a prenatal infection at the time of conception, nine months later these variables run parallel to the birth excess number of individuals with schizophrenia. In Singapore, by contrast, the non-significant birth excess in schizophrenia [41] is in line with the apparent absence of Ixodes ticks and B. burgdorferi from that part of the world [40].
Mentions: Due to the central European midsummer decrease in air humidity and thus reduced tick activity [19], the relative decline towards a schizophrenic birth deficit in April appears earlier and more pronounced the further south we move. See Switzerland [14] and Germany [15] in figure 1.

Bottom Line: All published numerical data were then plotted against the seasonal distributions of Ixodes ticks worldwide.South of the Wallace Line, which limits the spread of Ixodes ticks and Borrelia burgdorferi into Australia, seasonal trends are less significant, and in Singapore, being non-endemic for Ixodes ticks and Lyme disease, schizophrenic birth excesses are absent.CONCLUSION: At present, it cannot be excluded that prenatal infection by B. burgdorferi is harmful to the implanting human blastocyst.

View Article: PubMed Central - HTML - PubMed

Affiliation: Clinic for Internal Medicine, Soodstrasse 13, 8134 Adliswil, Switzerland. markus.fritzsche@bluewin.ch

ABSTRACT
BACKGROUND: Being born in winter and spring is considered one of the most robust epidemiological risk factors for schizophrenia. The aetiology and exact timing of this birth excess, however, has remained elusive so far. Since during phylogeny, Borrelia DNA has led to multiple germ-line mutations within the CB1 candidate gene for schizophrenia, a meta analysis has been performed of all papers on schizophrenic birth excesses with no less than 3000 cases each. All published numerical data were then plotted against the seasonal distributions of Ixodes ticks worldwide. RESULTS: In the United States, Europe and Japan the birth excesses of those individuals who later in life develop schizophrenia mirror the seasonal distribution of Ixodes ticks nine months earlier at the time of conception. South of the Wallace Line, which limits the spread of Ixodes ticks and Borrelia burgdorferi into Australia, seasonal trends are less significant, and in Singapore, being non-endemic for Ixodes ticks and Lyme disease, schizophrenic birth excesses are absent. CONCLUSION: At present, it cannot be excluded that prenatal infection by B. burgdorferi is harmful to the implanting human blastocyst. The epidemiological clustering of sporadic schizophrenia by season and locality rather emphasises the risk to the unborn of developing a congenital, yet preventable brain disorder later in life.

No MeSH data available.


Related in: MedlinePlus