Limits...
Extracorporeal membrane oxygenation for severe acute respiratory failure.

Lewandowski K - Crit Care (2000)

Bottom Line: Extracorporeal membrane oxygenation (ECMO) is a technique for providing life support, in case the natural lungs are failing and are not able to maintain a sufficient oxygenation of the body's organ systems.In conventional treatment lung-protective ventilation strategies were introduced and ECMO was made safer by applying heparin-coated equipment, membranes and tubings.The question, however, of whether the improved ECMO can really challenge the advanced conventional treatment of adult ARDS is unanswered and will need evaluation by a future RCT.

View Article: PubMed Central - HTML - PubMed

Affiliation: Klinik für Anästhesiologie und operative Intensivmedizin, Charité, Campus Virchow-Klinikum, Berlin, Germany. klaus.lewandowski@charite.de

ABSTRACT
Extracorporeal membrane oxygenation (ECMO) is a technique for providing life support, in case the natural lungs are failing and are not able to maintain a sufficient oxygenation of the body's organ systems. ECMO technique was an adaptation of conventional cardiopulmonary bypass techniques and introduced into treatment of severe acute respiratory distress syndrome (ARDS) in the 1970s. The initial reports of the use of ECMO in ARDS patients were quite enthusiastic, however, in the following years it became clear that ECMO was only of benefit in newborns with acute respiratory failure. In neonates treated with ECMO, survival rates of 80% could be achieved. In adult patients with ARDS, two large randomized controlled trials (RCTs) published in 1979 and 1994 failed to show an advantage of ECMO over conventional treatment; survival rates were only 10% and 33%, respectively, in the ECMO groups. Since then, ECMO technology as well as conventional treatment of adult ARDS have undergone further improvements. In conventional treatment lung-protective ventilation strategies were introduced and ECMO was made safer by applying heparin-coated equipment, membranes and tubings. Many ECMO centres now use these advanced ECMO technology and report survival rates in excess of 50% in uncontrolled data collections. The question, however, of whether the improved ECMO can really challenge the advanced conventional treatment of adult ARDS is unanswered and will need evaluation by a future RCT.

Show MeSH

Related in: MedlinePlus

ARDS patients treated with ECMO in European centres from 1992 to 1998. Data were obtained by a yearly fax survey among the centres. In 1995 the number of centres participating in the survey had almost doubled, as did the number of ECMO therapies. Since 1996 the frequency of ECMO therapies in Europe has been decreasing. Survival rates in ECMO patients have remained constant at above 50% during the past 6 years.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC137254&req=5

Figure 1: ARDS patients treated with ECMO in European centres from 1992 to 1998. Data were obtained by a yearly fax survey among the centres. In 1995 the number of centres participating in the survey had almost doubled, as did the number of ECMO therapies. Since 1996 the frequency of ECMO therapies in Europe has been decreasing. Survival rates in ECMO patients have remained constant at above 50% during the past 6 years.

Mentions: The idea of supporting impaired lung function with extracorporeal gas exchange in adults, however, was subsequently pursued by Kolobow et al [29]. The rationale of their advanced technique was to prevent further damage to the diseased lungs by reducing their motion (pulmonary rest) with application of only a few ventilator breaths with low VT and low peak inspiratory pressures. This lung protective mechanical ventilation strategy became known as low-frequency positive-pressure ventilation (LFPPV) [30]. With this method, oxygen uptake and carbon dioxide removal were dissociated. Oxygenation was primarily accomplished through the nearly motionless natural lung via apneic oxygenation, and carbon dioxide was cleared through the artificial lung [extracorporeal carbon dioxide removal (ECCO2-R)]. The so-called LFPPV-ECCO2-R technique was performed at low extracorporeal blood flows (20-30% of cardiac output), so that a venovenous bypass technique instead of an arteriovenous one sufficed, which turned out to be less detrimental to blood cells, coagulation and internal organs. Using LFPPV-ECCO2-R, Gattinoni et al [30] reported survival rates of up to 49%. In the following years several centres corroborated the promising survival rates of around 50% and higher (Fig. 1); these were uncontrolled observations that needed further confirmation in RCTs.


Extracorporeal membrane oxygenation for severe acute respiratory failure.

Lewandowski K - Crit Care (2000)

ARDS patients treated with ECMO in European centres from 1992 to 1998. Data were obtained by a yearly fax survey among the centres. In 1995 the number of centres participating in the survey had almost doubled, as did the number of ECMO therapies. Since 1996 the frequency of ECMO therapies in Europe has been decreasing. Survival rates in ECMO patients have remained constant at above 50% during the past 6 years.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC137254&req=5

Figure 1: ARDS patients treated with ECMO in European centres from 1992 to 1998. Data were obtained by a yearly fax survey among the centres. In 1995 the number of centres participating in the survey had almost doubled, as did the number of ECMO therapies. Since 1996 the frequency of ECMO therapies in Europe has been decreasing. Survival rates in ECMO patients have remained constant at above 50% during the past 6 years.
Mentions: The idea of supporting impaired lung function with extracorporeal gas exchange in adults, however, was subsequently pursued by Kolobow et al [29]. The rationale of their advanced technique was to prevent further damage to the diseased lungs by reducing their motion (pulmonary rest) with application of only a few ventilator breaths with low VT and low peak inspiratory pressures. This lung protective mechanical ventilation strategy became known as low-frequency positive-pressure ventilation (LFPPV) [30]. With this method, oxygen uptake and carbon dioxide removal were dissociated. Oxygenation was primarily accomplished through the nearly motionless natural lung via apneic oxygenation, and carbon dioxide was cleared through the artificial lung [extracorporeal carbon dioxide removal (ECCO2-R)]. The so-called LFPPV-ECCO2-R technique was performed at low extracorporeal blood flows (20-30% of cardiac output), so that a venovenous bypass technique instead of an arteriovenous one sufficed, which turned out to be less detrimental to blood cells, coagulation and internal organs. Using LFPPV-ECCO2-R, Gattinoni et al [30] reported survival rates of up to 49%. In the following years several centres corroborated the promising survival rates of around 50% and higher (Fig. 1); these were uncontrolled observations that needed further confirmation in RCTs.

Bottom Line: Extracorporeal membrane oxygenation (ECMO) is a technique for providing life support, in case the natural lungs are failing and are not able to maintain a sufficient oxygenation of the body's organ systems.In conventional treatment lung-protective ventilation strategies were introduced and ECMO was made safer by applying heparin-coated equipment, membranes and tubings.The question, however, of whether the improved ECMO can really challenge the advanced conventional treatment of adult ARDS is unanswered and will need evaluation by a future RCT.

View Article: PubMed Central - HTML - PubMed

Affiliation: Klinik für Anästhesiologie und operative Intensivmedizin, Charité, Campus Virchow-Klinikum, Berlin, Germany. klaus.lewandowski@charite.de

ABSTRACT
Extracorporeal membrane oxygenation (ECMO) is a technique for providing life support, in case the natural lungs are failing and are not able to maintain a sufficient oxygenation of the body's organ systems. ECMO technique was an adaptation of conventional cardiopulmonary bypass techniques and introduced into treatment of severe acute respiratory distress syndrome (ARDS) in the 1970s. The initial reports of the use of ECMO in ARDS patients were quite enthusiastic, however, in the following years it became clear that ECMO was only of benefit in newborns with acute respiratory failure. In neonates treated with ECMO, survival rates of 80% could be achieved. In adult patients with ARDS, two large randomized controlled trials (RCTs) published in 1979 and 1994 failed to show an advantage of ECMO over conventional treatment; survival rates were only 10% and 33%, respectively, in the ECMO groups. Since then, ECMO technology as well as conventional treatment of adult ARDS have undergone further improvements. In conventional treatment lung-protective ventilation strategies were introduced and ECMO was made safer by applying heparin-coated equipment, membranes and tubings. Many ECMO centres now use these advanced ECMO technology and report survival rates in excess of 50% in uncontrolled data collections. The question, however, of whether the improved ECMO can really challenge the advanced conventional treatment of adult ARDS is unanswered and will need evaluation by a future RCT.

Show MeSH
Related in: MedlinePlus