Limits...
From the cell biology to the development of new chemotherapeutic approaches against trypanosomatids: dreams and reality.

De Souza W - Kinetoplastid Biol Dis (2002)

Bottom Line: These organisms are also of biological interest since they are able to change the morphology according to the environment where they live, through a process of reversible cell transformation, and possess structures and organelles that are not found in mammalian cells.In addition, the present knowledge of structures and organelles such as the nucleus, the plasma membrane, the sub-pellicular microtubules, the flagellum, the kinetoplast-mitochondrion complex, the peroxisome (glycosome), the acidocalcisome and the structures and organelles involved in the endocytic pathway, is reviewed from a cell biology perspective.The possible use of available data for the development of new anti parasite drugs is also discussed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCSBloco G, 21941900, Rio de JaneiroRJ, Brasil. wsouza@biof.ufrj.br

ABSTRACT
Members of the Trypanosomatidae family comprise a large number of species that are causative agents of important diseases such as sleeping sickness, Chagas' disease and Leishmaniasis. These organisms are also of biological interest since they are able to change the morphology according to the environment where they live, through a process of reversible cell transformation, and possess structures and organelles that are not found in mammalian cells. This review analyses the process of transformation, which takes place during the life cycle of Trypanosoma cruzi in the vertebrate and invertebrate hosts. Special attention is given to the interaction of the parasite with vertebrate cells. In addition, the present knowledge of structures and organelles such as the nucleus, the plasma membrane, the sub-pellicular microtubules, the flagellum, the kinetoplast-mitochondrion complex, the peroxisome (glycosome), the acidocalcisome and the structures and organelles involved in the endocytic pathway, is reviewed from a cell biology perspective. The possible use of available data for the development of new anti parasite drugs is also discussed.

No MeSH data available.


Related in: MedlinePlus

Deep-etchinng view of the kinetoplast and the region of flagellar emergence of an epimastigote form of T. cruzi.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC119324&req=5

Figure 15: Deep-etchinng view of the kinetoplast and the region of flagellar emergence of an epimastigote form of T. cruzi.

Mentions: Trypanosoma cruzi, as well as other members of the Trypanosomatidae family, possesses only one mitochondrion that extends throughout the cell body. At a certain portion of the mitochondrion, localized near the basal body, there is a complex array of DNA fibrils in the mitochondrial matrix which forms the structure known as kinetoplast [Review in [46]] (Fig. 11). This structure is diagnostic of the order Kinetoplastida to which the Trypanosomatidae family belongs. The kinetoplast of epimastigote and spheromastigote forms of T. cruzi have a similar morphology. The filamentous material is arranged in a tightly packed row of fibers oriented parallel to the longitudinal axis of the protozoan. The whole structure appears as a slightly concave disk of 1.0 ~μm in length, and a depth of 0.1 μm. There is a space between the kinetoplast and the inner mitochondrial membrane in which mitochondrial cristae can be seen. At least some fibrils of the kinetoplast DNA make contact with the inner mitochondrial membrane. Such contact is observed mainly in the portion of the mitochondrion that faces the basal body (Fig. 15).


From the cell biology to the development of new chemotherapeutic approaches against trypanosomatids: dreams and reality.

De Souza W - Kinetoplastid Biol Dis (2002)

Deep-etchinng view of the kinetoplast and the region of flagellar emergence of an epimastigote form of T. cruzi.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC119324&req=5

Figure 15: Deep-etchinng view of the kinetoplast and the region of flagellar emergence of an epimastigote form of T. cruzi.
Mentions: Trypanosoma cruzi, as well as other members of the Trypanosomatidae family, possesses only one mitochondrion that extends throughout the cell body. At a certain portion of the mitochondrion, localized near the basal body, there is a complex array of DNA fibrils in the mitochondrial matrix which forms the structure known as kinetoplast [Review in [46]] (Fig. 11). This structure is diagnostic of the order Kinetoplastida to which the Trypanosomatidae family belongs. The kinetoplast of epimastigote and spheromastigote forms of T. cruzi have a similar morphology. The filamentous material is arranged in a tightly packed row of fibers oriented parallel to the longitudinal axis of the protozoan. The whole structure appears as a slightly concave disk of 1.0 ~μm in length, and a depth of 0.1 μm. There is a space between the kinetoplast and the inner mitochondrial membrane in which mitochondrial cristae can be seen. At least some fibrils of the kinetoplast DNA make contact with the inner mitochondrial membrane. Such contact is observed mainly in the portion of the mitochondrion that faces the basal body (Fig. 15).

Bottom Line: These organisms are also of biological interest since they are able to change the morphology according to the environment where they live, through a process of reversible cell transformation, and possess structures and organelles that are not found in mammalian cells.In addition, the present knowledge of structures and organelles such as the nucleus, the plasma membrane, the sub-pellicular microtubules, the flagellum, the kinetoplast-mitochondrion complex, the peroxisome (glycosome), the acidocalcisome and the structures and organelles involved in the endocytic pathway, is reviewed from a cell biology perspective.The possible use of available data for the development of new anti parasite drugs is also discussed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCSBloco G, 21941900, Rio de JaneiroRJ, Brasil. wsouza@biof.ufrj.br

ABSTRACT
Members of the Trypanosomatidae family comprise a large number of species that are causative agents of important diseases such as sleeping sickness, Chagas' disease and Leishmaniasis. These organisms are also of biological interest since they are able to change the morphology according to the environment where they live, through a process of reversible cell transformation, and possess structures and organelles that are not found in mammalian cells. This review analyses the process of transformation, which takes place during the life cycle of Trypanosoma cruzi in the vertebrate and invertebrate hosts. Special attention is given to the interaction of the parasite with vertebrate cells. In addition, the present knowledge of structures and organelles such as the nucleus, the plasma membrane, the sub-pellicular microtubules, the flagellum, the kinetoplast-mitochondrion complex, the peroxisome (glycosome), the acidocalcisome and the structures and organelles involved in the endocytic pathway, is reviewed from a cell biology perspective. The possible use of available data for the development of new anti parasite drugs is also discussed.

No MeSH data available.


Related in: MedlinePlus