Limits...
Three microarray platforms: an analysis of their concordance in profiling gene expression.

Petersen D, Chandramouli GV, Geoghegan J, Hilburn J, Paarlberg J, Kim CH, Munroe D, Gangi L, Han J, Puri R, Staudt L, Weinstein J, Barrett JC, Green J, Kawasaki ES - BMC Genomics (2005)

Bottom Line: When concordance was measured for expression ratios significant at p-values of <0.05 and at expression threshold levels of 1.5 and 2-fold, the agreement among the platforms was very high, ranging from 93% to 100%.Our results indicate that the long oligonucleotide platform is highly suitable for expression analysis and compares favorably with the cDNA and short oligonucleotide varieties.All three platforms can give similar and reproducible results if the criterion is the direction of change in gene expression and minimal emphasis is placed on the magnitude of change.

View Article: PubMed Central - HTML - PubMed

Affiliation: Advanced Technology Center, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD 20877, USA. petersed@mail.nih.gov

ABSTRACT

Background: Microarrays for the analysis of gene expression are of three different types: short oligonucleotide (25-30 base), long oligonucleotide (50-80 base), and cDNA (highly variable in length). The short oligonucleotide and cDNA arrays have been the mainstay of expression analysis to date, but long oligonucleotide platforms are gaining in popularity and will probably replace cDNA arrays. As part of a validation study for the long oligonucleotide arrays, we compared and contrasted expression profiles from the three formats, testing RNA from six different cell lines against a universal reference standard.

Results: The three platforms had 6430 genes in common. In general, correlation of gene expression levels across the platforms was good when defined by concordance in the direction of expression difference (upregulation or downregulation), scatter plot analysis, principal component analysis, cell line correlation or quantitative RT-PCR. The overall correlations (r values) between platforms were in the range 0.7 to 0.8, as determined by analysis of scatter plots. When concordance was measured for expression ratios significant at p-values of <0.05 and at expression threshold levels of 1.5 and 2-fold, the agreement among the platforms was very high, ranging from 93% to 100%.

Conclusion: Our results indicate that the long oligonucleotide platform is highly suitable for expression analysis and compares favorably with the cDNA and short oligonucleotide varieties. All three platforms can give similar and reproducible results if the criterion is the direction of change in gene expression and minimal emphasis is placed on the magnitude of change.

Show MeSH
a-c. Correlation of correlations of platforms for all cell lines. Correlation values R for each pair of platforms are given in the figures. (a) Operon versus Incyte (b) Affymetrix versus Incyte (c) Affymetrix versus Operon.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC1140753&req=5

Figure 4: a-c. Correlation of correlations of platforms for all cell lines. Correlation values R for each pair of platforms are given in the figures. (a) Operon versus Incyte (b) Affymetrix versus Incyte (c) Affymetrix versus Operon.

Mentions: The global concordance of the three platforms across all of the cell lines was estimated by calculating the "correlation of correlations" coefficient [10,11]. As seen in Figure 4a–c, the correlations for the three platforms across all cells lines were quite good. The Pearson correlation of correlation coefficients was 0.965 between Operon and Incyte, 0.995 between Affymetrix and Incyte, and 0.956 between Operon and Affymetrix.


Three microarray platforms: an analysis of their concordance in profiling gene expression.

Petersen D, Chandramouli GV, Geoghegan J, Hilburn J, Paarlberg J, Kim CH, Munroe D, Gangi L, Han J, Puri R, Staudt L, Weinstein J, Barrett JC, Green J, Kawasaki ES - BMC Genomics (2005)

a-c. Correlation of correlations of platforms for all cell lines. Correlation values R for each pair of platforms are given in the figures. (a) Operon versus Incyte (b) Affymetrix versus Incyte (c) Affymetrix versus Operon.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC1140753&req=5

Figure 4: a-c. Correlation of correlations of platforms for all cell lines. Correlation values R for each pair of platforms are given in the figures. (a) Operon versus Incyte (b) Affymetrix versus Incyte (c) Affymetrix versus Operon.
Mentions: The global concordance of the three platforms across all of the cell lines was estimated by calculating the "correlation of correlations" coefficient [10,11]. As seen in Figure 4a–c, the correlations for the three platforms across all cells lines were quite good. The Pearson correlation of correlation coefficients was 0.965 between Operon and Incyte, 0.995 between Affymetrix and Incyte, and 0.956 between Operon and Affymetrix.

Bottom Line: When concordance was measured for expression ratios significant at p-values of <0.05 and at expression threshold levels of 1.5 and 2-fold, the agreement among the platforms was very high, ranging from 93% to 100%.Our results indicate that the long oligonucleotide platform is highly suitable for expression analysis and compares favorably with the cDNA and short oligonucleotide varieties.All three platforms can give similar and reproducible results if the criterion is the direction of change in gene expression and minimal emphasis is placed on the magnitude of change.

View Article: PubMed Central - HTML - PubMed

Affiliation: Advanced Technology Center, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD 20877, USA. petersed@mail.nih.gov

ABSTRACT

Background: Microarrays for the analysis of gene expression are of three different types: short oligonucleotide (25-30 base), long oligonucleotide (50-80 base), and cDNA (highly variable in length). The short oligonucleotide and cDNA arrays have been the mainstay of expression analysis to date, but long oligonucleotide platforms are gaining in popularity and will probably replace cDNA arrays. As part of a validation study for the long oligonucleotide arrays, we compared and contrasted expression profiles from the three formats, testing RNA from six different cell lines against a universal reference standard.

Results: The three platforms had 6430 genes in common. In general, correlation of gene expression levels across the platforms was good when defined by concordance in the direction of expression difference (upregulation or downregulation), scatter plot analysis, principal component analysis, cell line correlation or quantitative RT-PCR. The overall correlations (r values) between platforms were in the range 0.7 to 0.8, as determined by analysis of scatter plots. When concordance was measured for expression ratios significant at p-values of <0.05 and at expression threshold levels of 1.5 and 2-fold, the agreement among the platforms was very high, ranging from 93% to 100%.

Conclusion: Our results indicate that the long oligonucleotide platform is highly suitable for expression analysis and compares favorably with the cDNA and short oligonucleotide varieties. All three platforms can give similar and reproducible results if the criterion is the direction of change in gene expression and minimal emphasis is placed on the magnitude of change.

Show MeSH