Limits...
Four signature motifs define the first class of structurally related large coiled-coil proteins in plants.

Gindullis F, Rose A, Patel S, Meier I - BMC Genomics (2002)

Bottom Line: Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1.The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein.Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

View Article: PubMed Central - HTML - PubMed

Affiliation: CellTec Biotechnologie GmbH, Frohmestrasse 110, D-22459 Hamburg, Germany. frank.gindullis@celltec.de

ABSTRACT

Background: Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants.

Results: We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms.

Conclusion: Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

No MeSH data available.


Four novel sequence motifs define a sub family of plant coiled-coil proteins. (A) Sequence alignment of motifs I, II, III, and IV. In all four alignments, amino acid residues conserved among all dicot sequences are indicated in black. Amino acids in the rice sequence that match these conserved residues are also indicated in black. All residues are matched by the rice sequence in motifs II, III, and IV, while 6 residues are exchanged in the rice sequence in motif I. Numbers on the left indicate the position of the first residue of each motif in the amino acid sequence of the respective protein. (B) Percent amino acid identity between FPP proteins.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC102765&req=5

Figure 4: Four novel sequence motifs define a sub family of plant coiled-coil proteins. (A) Sequence alignment of motifs I, II, III, and IV. In all four alignments, amino acid residues conserved among all dicot sequences are indicated in black. Amino acids in the rice sequence that match these conserved residues are also indicated in black. All residues are matched by the rice sequence in motifs II, III, and IV, while 6 residues are exchanged in the rice sequence in motif I. Numbers on the left indicate the position of the first residue of each motif in the amino acid sequence of the respective protein. (B) Percent amino acid identity between FPP proteins.

Mentions: A translated BLAST search identified one additional "hit" in the rice BAC H0212B02 of chromosome 4 (GenBank accession number AL442007). The "hit" lay between the annotated open reading frames H0212B02.17 and H0212B02.18 in a region of DNA not predicted to have coding capacity. However, running GenScan [39] on this part of the BAC, an open reading frame of 1074 amino acids was identified on the opposite strand that contained the "hit". The predicted coding region begins at position 114,922 of the H0212B02 DNA sequence, ends at position 107,317, and contains seven predicted introns. This rice open reading frame was named OsFPP and was included in the sequence and structural analysis shown in Fig. 3 and Fig. 4.


Four signature motifs define the first class of structurally related large coiled-coil proteins in plants.

Gindullis F, Rose A, Patel S, Meier I - BMC Genomics (2002)

Four novel sequence motifs define a sub family of plant coiled-coil proteins. (A) Sequence alignment of motifs I, II, III, and IV. In all four alignments, amino acid residues conserved among all dicot sequences are indicated in black. Amino acids in the rice sequence that match these conserved residues are also indicated in black. All residues are matched by the rice sequence in motifs II, III, and IV, while 6 residues are exchanged in the rice sequence in motif I. Numbers on the left indicate the position of the first residue of each motif in the amino acid sequence of the respective protein. (B) Percent amino acid identity between FPP proteins.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC102765&req=5

Figure 4: Four novel sequence motifs define a sub family of plant coiled-coil proteins. (A) Sequence alignment of motifs I, II, III, and IV. In all four alignments, amino acid residues conserved among all dicot sequences are indicated in black. Amino acids in the rice sequence that match these conserved residues are also indicated in black. All residues are matched by the rice sequence in motifs II, III, and IV, while 6 residues are exchanged in the rice sequence in motif I. Numbers on the left indicate the position of the first residue of each motif in the amino acid sequence of the respective protein. (B) Percent amino acid identity between FPP proteins.
Mentions: A translated BLAST search identified one additional "hit" in the rice BAC H0212B02 of chromosome 4 (GenBank accession number AL442007). The "hit" lay between the annotated open reading frames H0212B02.17 and H0212B02.18 in a region of DNA not predicted to have coding capacity. However, running GenScan [39] on this part of the BAC, an open reading frame of 1074 amino acids was identified on the opposite strand that contained the "hit". The predicted coding region begins at position 114,922 of the H0212B02 DNA sequence, ends at position 107,317, and contains seven predicted introns. This rice open reading frame was named OsFPP and was included in the sequence and structural analysis shown in Fig. 3 and Fig. 4.

Bottom Line: Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1.The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein.Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

View Article: PubMed Central - HTML - PubMed

Affiliation: CellTec Biotechnologie GmbH, Frohmestrasse 110, D-22459 Hamburg, Germany. frank.gindullis@celltec.de

ABSTRACT

Background: Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants.

Results: We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms.

Conclusion: Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

No MeSH data available.