Limits...
Four signature motifs define the first class of structurally related large coiled-coil proteins in plants.

Gindullis F, Rose A, Patel S, Meier I - BMC Genomics (2002)

Bottom Line: Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1.The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein.Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

View Article: PubMed Central - HTML - PubMed

Affiliation: CellTec Biotechnologie GmbH, Frohmestrasse 110, D-22459 Hamburg, Germany. frank.gindullis@celltec.de

ABSTRACT

Background: Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants.

Results: We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms.

Conclusion: Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

No MeSH data available.


Comparison of predicted secondary structure of FPP proteins. All proteins are drawn to scale. The numbers on the scales represent amino acids. Alpha helices are indicated as gray bars (A); coiled-coil domains are indicated as white bars (*). The positions of the four conserved sequence motifs are indicated as I, II, III, and IV on the scales. I* indicates the variant of motif I found in OsFPP.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC102765&req=5

Figure 3: Comparison of predicted secondary structure of FPP proteins. All proteins are drawn to scale. The numbers on the scales represent amino acids. Alpha helices are indicated as gray bars (A); coiled-coil domains are indicated as white bars (*). The positions of the four conserved sequence motifs are indicated as I, II, III, and IV on the scales. I* indicates the variant of motif I found in OsFPP.

Mentions: A BLAST search with the pAD-LeFPP open reading frame indicated that it represents a novel protein with weak similarity to filament-like proteins from animals and yeast (see below). Secondary structure prediction algorithms showed that it is organized almost entirely in alpha-helical domains and contains extensive stretches of coiled-coil domains (Fig. 2A and Fig 3). The protein was named LeFPP for tomato filament-like plant protein. RNA blot analysis showed a single species of mRNA of ca. 2.4 kb. It is present in tomato leaves, fruits, flowers, light-grown seedlings, and dark-grown seedlings (Fig. 2B).


Four signature motifs define the first class of structurally related large coiled-coil proteins in plants.

Gindullis F, Rose A, Patel S, Meier I - BMC Genomics (2002)

Comparison of predicted secondary structure of FPP proteins. All proteins are drawn to scale. The numbers on the scales represent amino acids. Alpha helices are indicated as gray bars (A); coiled-coil domains are indicated as white bars (*). The positions of the four conserved sequence motifs are indicated as I, II, III, and IV on the scales. I* indicates the variant of motif I found in OsFPP.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC102765&req=5

Figure 3: Comparison of predicted secondary structure of FPP proteins. All proteins are drawn to scale. The numbers on the scales represent amino acids. Alpha helices are indicated as gray bars (A); coiled-coil domains are indicated as white bars (*). The positions of the four conserved sequence motifs are indicated as I, II, III, and IV on the scales. I* indicates the variant of motif I found in OsFPP.
Mentions: A BLAST search with the pAD-LeFPP open reading frame indicated that it represents a novel protein with weak similarity to filament-like proteins from animals and yeast (see below). Secondary structure prediction algorithms showed that it is organized almost entirely in alpha-helical domains and contains extensive stretches of coiled-coil domains (Fig. 2A and Fig 3). The protein was named LeFPP for tomato filament-like plant protein. RNA blot analysis showed a single species of mRNA of ca. 2.4 kb. It is present in tomato leaves, fruits, flowers, light-grown seedlings, and dark-grown seedlings (Fig. 2B).

Bottom Line: Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1.The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein.Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

View Article: PubMed Central - HTML - PubMed

Affiliation: CellTec Biotechnologie GmbH, Frohmestrasse 110, D-22459 Hamburg, Germany. frank.gindullis@celltec.de

ABSTRACT

Background: Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants.

Results: We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms.

Conclusion: Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

No MeSH data available.