Open-i Logo
Submit this form
Results 1-1   << Back

 
An 83-year-old woman with clinical evidence of right hemispheric ischemia shows no obvious infarct or chronic ischemic changes in the right cerebral hemisphere and in the cerebellum on plain CT scan of the head (A-C). Chronic right internal carotid artery occlusion (arrows) is seen on a CT angiogram image (D). Whole brain CT perfusion (E-H) shows matched decrease in CBF (arrows in E) and CBV (arrows in F) in the right middle cerebral artery distribution. There is also decreased CBF (arrows in G) and CBV (arrows in H) in the contralateral cerebellar hemisphere (arrows), suggestive of crossed cerebellar diaschisis
© Copyright Policy

Figure 4: An 83-year-old woman with clinical evidence of right hemispheric ischemia shows no obvious infarct or chronic ischemic changes in the right cerebral hemisphere and in the cerebellum on plain CT scan of the head (A-C). Chronic right internal carotid artery occlusion (arrows) is seen on a CT angiogram image (D). Whole brain CT perfusion (E-H) shows matched decrease in CBF (arrows in E) and CBV (arrows in F) in the right middle cerebral artery distribution. There is also decreased CBF (arrows in G) and CBV (arrows in H) in the contralateral cerebellar hemisphere (arrows), suggestive of crossed cerebellar diaschisis

Mentions: In patients with chronic ischemia of the brain, a wide spectrum of findings such as multiple, patchy ischemic lesions or lesions quite remote from the actual site of ischemia can be seen. In crossed cerebellar diaschisis (CCD), there is metabolic depression in the cerebellum contralateral to supratentorial lesions.[2] This entity has been described on PET and MRI perfusion studies.[34] However, to the best of our knowledge, it has not been described on conventional CTP due to reasons of limited coverage. With the whole brain CTP, we have seen evidence of CCD in patients with supratentorial lesions[5] [Figure 4].

Whole brain CT perfusion on a 320-slice CT scanner

Shankar JJ, Lum C - Indian J Radiol Imaging (2011)

Bottom Line: The availability of 320-slice CT scanners offers whole brain coverage.This minimizes the chances of misregistration of lesions regardless of location, and makes the selection of the arterial input function easy.We present different clinical scenarios in which whole brain CTP is especially useful.

Affiliation: Department of Diagnostic Imaging, QE II Hospital, Halifax, Canada.

ABSTRACT
Computed tomography perfusion (CTP) has been criticized for limited brain coverage. This may result in inadequate coverage of the lesion, inadequate arterial input function, or omission of the lesion within the target perfusion volume. The availability of 320-slice CT scanners offers whole brain coverage. This minimizes the chances of misregistration of lesions regardless of location, and makes the selection of the arterial input function easy. We present different clinical scenarios in which whole brain CTP is especially useful.

View Similar Images In: Results Collection              View Article: Pubmed Central PubMed      Show All Figures 
getmorefigures.php?pmc=3190494&rFormat=json&query=null&fields=all&favor=none&it=none&sub=none&sp=none&coll=none&lic=none&vid=none&req=5
Show MeSH

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894
National Institutes of Health, Department of Health & Human Services
Privacy, Accessibility, Frequently Asked Questions, Contact Us, Collection
Freedom of Information Act, USA.gov