Limits...
Theory and Developments in an Unobtrusive Cardiovascular System Representation: Ballistocardiography

Pinheiro E, Postolache O, Girão P - Open Biomed Eng J (2010)

Bottom Line: Due to recent technological improvements, namely in the field of piezoelectric sensors, ballistocardiography - an almost forgotten physiological measurement - is now being object of a renewed scientific interest.Transcending the initial purposes of its development, ballistocardiography has revealed itself to be a useful informative signal about the cardiovascular system status, since it is a non-intrusive technique which is able to assess the body's vibrations due to its cardiac, and respiratory physiological signatures.Apart from representing the outcome of the electrical stimulus to the myocardium - which may be obtained by electrocardiography - the ballistocardiograph has additional advantages, as it can be embedded in objects of common use, such as a bed or a chair.Moreover, it enables measurements without the presence of medical staff, factor which avoids the stress caused by medical examinations and reduces the patient's involuntary psychophysiological responses.Given these attributes, and the crescent number of systems developed in recent years, it is therefore pertinent to revise all the information available on the ballistocardiogram's physiological interpretation, its typical waveform information, its features and distortions, as well as the state of the art in device implementations.

Affiliation: Instituto de Telecomunicações, Instituto Superior Técnico, Torre Norte piso 10, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal.

ABSTRACT

Due to recent technological improvements, namely in the field of piezoelectric sensors, ballistocardiography - an almost forgotten physiological measurement - is now being object of a renewed scientific interest.Transcending the initial purposes of its development, ballistocardiography has revealed itself to be a useful informative signal about the cardiovascular system status, since it is a non-intrusive technique which is able to assess the body's vibrations due to its cardiac, and respiratory physiological signatures.Apart from representing the outcome of the electrical stimulus to the myocardium - which may be obtained by electrocardiography - the ballistocardiograph has additional advantages, as it can be embedded in objects of common use, such as a bed or a chair. Moreover, it enables measurements without the presence of medical staff, factor which avoids the stress caused by medical examinations and reduces the patient's involuntary psychophysiological responses.Given these attributes, and the crescent number of systems developed in recent years, it is therefore pertinent to revise all the information available on the ballistocardiogram's physiological interpretation, its typical waveform information, its features and distortions, as well as the state of the art in device implementations.

MB-1 Ballistocardiograph, image courtesy of Nihon Kohden.
© Copyright Policy - open-access

Figure 5: MB-1 Ballistocardiograph, image courtesy of Nihon Kohden.

Mentions: During the establishment of ballistocardiography as a valuable exam, and when plenty of the key physiological, clinical and instrumentation aspects were yet undefined, the Japanese company Nihon Kohden already had started the commercialization of its MB-1 device, Fig. (5). This device, built in 1953, is far bigger than the system embedded in a chair, developed in this decade.

View Similar Images In: Results  - Collection
View Article: Pubmed Central -  PubMed
Show All Figures - Show MeSH
getmorefigures.php?pmc=3111731&rFormat=json&query=null&req=5
Theory and Developments in an Unobtrusive Cardiovascular System Representation: Ballistocardiography

Pinheiro E, Postolache O, Girão P - Open Biomed Eng J (2010)

MB-1 Ballistocardiograph, image courtesy of Nihon Kohden.
© Copyright Policy
Figure 5: MB-1 Ballistocardiograph, image courtesy of Nihon Kohden.
Mentions: During the establishment of ballistocardiography as a valuable exam, and when plenty of the key physiological, clinical and instrumentation aspects were yet undefined, the Japanese company Nihon Kohden already had started the commercialization of its MB-1 device, Fig. (5). This device, built in 1953, is far bigger than the system embedded in a chair, developed in this decade.

Bottom Line: Due to recent technological improvements, namely in the field of piezoelectric sensors, ballistocardiography - an almost forgotten physiological measurement - is now being object of a renewed scientific interest.Transcending the initial purposes of its development, ballistocardiography has revealed itself to be a useful informative signal about the cardiovascular system status, since it is a non-intrusive technique which is able to assess the body's vibrations due to its cardiac, and respiratory physiological signatures.Apart from representing the outcome of the electrical stimulus to the myocardium - which may be obtained by electrocardiography - the ballistocardiograph has additional advantages, as it can be embedded in objects of common use, such as a bed or a chair.Moreover, it enables measurements without the presence of medical staff, factor which avoids the stress caused by medical examinations and reduces the patient's involuntary psychophysiological responses.Given these attributes, and the crescent number of systems developed in recent years, it is therefore pertinent to revise all the information available on the ballistocardiogram's physiological interpretation, its typical waveform information, its features and distortions, as well as the state of the art in device implementations.

Affiliation: Instituto de Telecomunicações, Instituto Superior Técnico, Torre Norte piso 10, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal.

ABSTRACT

Background: Due to recent technological improvements, namely in the field of piezoelectric sensors, ballistocardiography - an almost forgotten physiological measurement - is now being object of a renewed scientific interest.Transcending the initial purposes of its development, ballistocardiography has revealed itself to be a useful informative signal about the cardiovascular system status, since it is a non-intrusive technique which is able to assess the body's vibrations due to its cardiac, and respiratory physiological signatures.Apart from representing the outcome of the electrical stimulus to the myocardium - which may be obtained by electrocardiography - the ballistocardiograph has additional advantages, as it can be embedded in objects of common use, such as a bed or a chair. Moreover, it enables measurements without the presence of medical staff, factor which avoids the stress caused by medical examinations and reduces the patient's involuntary psychophysiological responses.Given these attributes, and the crescent number of systems developed in recent years, it is therefore pertinent to revise all the information available on the ballistocardiogram's physiological interpretation, its typical waveform information, its features and distortions, as well as the state of the art in device implementations.

View Similar Images In: Results  - Collection
View Article: Pubmed Central -  PubMed
Show All Figures - Show MeSH
getmorefigures.php?pmc=3111731&rFormat=json&query=null&req=5