Limits...
Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

Ciofani G, Raffa V, Menciassi A, Cuschieri A - Nanoscale Res Lett (2008)

Bottom Line: The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality.Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand.Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

ABSTRACT

Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

UV–Vis spectra of folic acid, PLL-BNNTs, a mixture of folic acid and PLL-BNNTs, and F-PLL-BNNTs
© Copyright Policy

Figure 2: UV–Vis spectra of folic acid, PLL-BNNTs, a mixture of folic acid and PLL-BNNTs, and F-PLL-BNNTs

Mentions: Spectrophotometric analysis was carried out after each experiment to verify the binding of folic acid with the PLL-BNNTs (Fig. 2). Folic acid exhibits a strong absorbance at 240 nm, a shoulder peak at about 290 nm, and a further strong peak at 370 nm; whereas PLL-BNNTs have just one absorbance peak at around 235 nm. F-PLL-BNNT dispersions exhibit a peak at 260 nm and a weak shoulder at about 360 nm. These absorbance shifts resulted from the interaction of PLL-BNNTs and folic acid, confirming successful chemical conjugation. The spectrum of a simple mixture of PLL-BNNT dispersion with the solution of folic acid, without reaction induced by EDC, was obtained as a control which showed that both the peaks and the shoulder peak of the folic acid were detectable at the same wavelength as that of the “free” folate.

View Similar Images In: Results  - Collection
View Article: MedlinePlus - PubMed Central - HTML -  PubMed
Show All Figures - Show MeSH
getmorefigures.php?pmc=2893832&rFormat=json&query=null&req=5
Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

Ciofani G, Raffa V, Menciassi A, Cuschieri A - Nanoscale Res Lett (2008)

UV–Vis spectra of folic acid, PLL-BNNTs, a mixture of folic acid and PLL-BNNTs, and F-PLL-BNNTs
© Copyright Policy
Figure 2: UV–Vis spectra of folic acid, PLL-BNNTs, a mixture of folic acid and PLL-BNNTs, and F-PLL-BNNTs
Mentions: Spectrophotometric analysis was carried out after each experiment to verify the binding of folic acid with the PLL-BNNTs (Fig. 2). Folic acid exhibits a strong absorbance at 240 nm, a shoulder peak at about 290 nm, and a further strong peak at 370 nm; whereas PLL-BNNTs have just one absorbance peak at around 235 nm. F-PLL-BNNT dispersions exhibit a peak at 260 nm and a weak shoulder at about 360 nm. These absorbance shifts resulted from the interaction of PLL-BNNTs and folic acid, confirming successful chemical conjugation. The spectrum of a simple mixture of PLL-BNNT dispersion with the solution of folic acid, without reaction induced by EDC, was obtained as a control which showed that both the peaks and the shoulder peak of the folic acid were detectable at the same wavelength as that of the “free” folate.

Bottom Line: The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality.Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand.Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

ABSTRACT

Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

View Similar Images In: Results  - Collection
View Article: MedlinePlus - PubMed Central - HTML -  PubMed
Show All Figures - Show MeSH
getmorefigures.php?pmc=2893832&rFormat=json&query=null&req=5